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FOREWORD

This work was sponsored by the Office of Naval Research under work request
numbers N00014-82-WR-20129 and N00014-82-K-0263 as a cooperative effort
between NSWC, White Oak, and the University of Maryland, College Park. The
results and conclusions presented in this report concerning the microstruc-
tural characterization of deformed RDX explosive and selected reference inert
(MgO and NaCI) crystals should be of interest to those studying plastic
deformation and fracture in these materials. In particular, this work
provides insight into their ability to locally concentrate energy as a result
of being plastically deformed in a controlled manner. A listing of references
appears on several pages after the body of the report.

Dr. J. W. Cleland of the Solid State Division of the Oak Ridge National
Laboratory supplied the MgO crystal.

Approved by:

J, 6 PROCTOR, Head
Energetic Materials Division
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INTRODUCTION

It is well known that for initiation to occur in a solid explosive under
impact conditions, the energy transferred must be concentrated into small
volumes of the explosive. The most widely-held view explaining this
phenomenon involves the formation of "hot spots" as a result of the explosive
experiencing a mechanical stimulus. Heat is generated within a fixed volume
at a sufficient rate to cause the temperature to rise very rapidly, the
kinetics being limited by the thermal conductivity to the surrounding medium.
A number of mechanisms, including adiabatic compression of small entrapped
bubbles of gas, friction (between explosive particles and between explosive
and impact tools), shear deformation, and fracture, have been envisioned as
leading to hot spot formation in crystalline explosives.1,2

The role that localized behavior plays in the impact initiation of
explosives has been investigated by striking single crystal targets
(explosive) with tiny spherical particles (inert). 3 Initiation resulted
when critical conditions for particle size and velocity were exceeded. A nice
feature of this experiment is the ability to examine and characterize the
deformation that resulted when the impact conditions were slightly below the
critical conditions necessary for initiation. Typically, the impact sites
were smooth plastic indentations and few fractures were found. It was
observed further that the deformation was highly localized in narrow bands of
material, which were proposed to form by adiabatic shear. It was also
suggested that the mechanism responsible for initiation was the production of
high local temperatures as a result of the adiabatic shear deformation.

It is consistent with dislocation theory concepts that deformation in
crystalline solids occurs by localized deformation twinning or along slip
planes that form into local shear bands. Similar inhomogeneous deformation
behavior occurs for partially crystalline or even amorphous material. The
bulk of the material, which is not in the shear bands, remains undeformed. A
dislocation description of localized shear deformation that occurs within a
model slip band indicates that appreciable heating can occur where a pile-up
is released suddenly in an avalanche mode.4 To date, no temperature
measurements have verified directly that shear bands are hot spot sites.
However, this may be inferred from related experiments. It has been reported
that the temperature at the tip of a propagating crack, where highly localized
plastic deformation is known to be occurring, is in excess of 500'K for
polymethylmethacrylate,5 in excess of 3200'K for glass, and about 4700'K for
quartz .6

1
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In an effort to determine the temperatures generated when various
energetic materials are impact loaded, a limited study 7 was performed on HMX
(cyclotetramethylenetetranitramine) explosive using a heat sensitive film as a
detector. Substantial deformation and tracture accompanied by'discoloration
of the film (calibrated as indicating temperatures greater than 220'C for the
impact loading conditions of this work) occurred when a single crystal of IIMX
(approximately 900 tm) was impacted from 5 cm, but no reaction resulted. At
a 10 cm drop height, enough heating took place to cause an ignition reaction
which died out. The reaction occurred in the most heavily deformed region of
the crystal. Very little heating resulted when a 30 mg pile of Class A HMX
was impacted at a 10 cm drop height.

For these experiments the enrgy imparted to the explosive sample was
insufficient to heat the entire sample to its ignition temperature. However,
it is clear that large temperature rises can result when explosive crystals,
such as INX, are deformed on impact, and that this heat production must be
localized, i.e., hot spots are formed. It is also clear that the heat
generation is related to the deformation that takes place in the explosive
crystal. The mechanics of deformation in explosive crystals remains to be
determined, along with answering how the actual resultant crystal defect
structure relates to hot spot formatiouj.

Individual explosive crystals themselves are not typically of convenient
size for many of the well-defined deformation experiments normally performed
on other types of materials. Microhardness testing8 provides a controlled
way of locally deforming these crystals offering information concerning the
active slip systems and the degree of plastic anisotropy. Normally, two types
of indenters art, employed: Vickers or diamond pyramid and Knoop. The Vickers
indenter has an apex angle of 136'. The Knoop indenter is more blunt than the
Vickers; a diagonal indentation results that is seven times longer in one
direction than in the other. It also vields a more shallow indentation which
makes Knoop testing very suitable for studying brittle materials such as
explosive crystals. It is the Knoop test that is used to investigate 9

plastic anisotropv.

In previous work, 1 ,li the degree of localized plastic deformation was
determined for RDX (cvclotrimnethvlenetrinitramine) explosive crystals grown at
NSWL. Microhardness indentations were placed on various growth facets of
several large (a few mm) size crystals that were grown from solution in
acetone by evaporation at room temperature. Both Knoop and Vickers indenta-
tions were made at a 50 g load with the orientation of the long axis of the
Knoop indenter being allowed to vary with respect to specific surface
directions in the growth facets. For the combined measurements on all of the
growth facets, a considerable variation in Knoop hardness number was obtained
(values ranged from 17 to 71 kgf/mm'), suggesting a limited number of
operative slip systems. An etch pit technique 12 was used to determine the
extent of the plastic zont, or strain field associated with each indentation.
Highly localized etch pit arrays centered on the indentations were observed
with the surface area of the plastic zones being only about 11 times greater

than the projected area of the indentations. In a preliminary comparative
study of product ion-g.rade (Holsten) Class D RDX crvstals (usually 1-2 mm),
Knoop hardness numbers compared well with values obtained for laboratory-grown

crystals.

2
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The objective of this current work is to further elucidate the
fundamental microstructural reasons for hot spots being generated during the
deformation of crystalline energetic and inert materials. The deformation
behavior of RDX, the most common ingredient in Navy explosives, is being
investigated at NSWC. Emphasis is being given to comparing various laboratory-
grown crystals having different degrees of microstructural perfection and
production-grade crystals. This work is closely allied with a companion
research effort on selected model inert crystals at the University of Maryland,
College Park.

CHARACTERIZATION AND DEFORMATION OF RDX

A large laboratory RDX crystal (Figure l(a)) grown by Dr. R. Y. Yee (Naval
Weapons Center, China Lake, CA) was studied using Laue and Berg-Barrett X-ray
diffraction techniques. This crystal was grown by slow evaporation from acetone
solution using a seed; the starting material was recrystallized Holsten
production-grade crystals chemically manufactured 3 by the nitration of
hexamethylenetetramine. The morphology of this crystal, as determined from a
zone analysis of its Laue back-reflection photograph, was found to be the same
as for the non-standard morphology of some of the laboratory RDX crystals
grownlO 'll previously at NSWC. Various growth surfaces and crystal directions
are specified in Figure l(b). The degree of microstructural perfection of this
crystal is significantly improved compared to crystals grown at NSWC, as
evidenced by the absence of optical dispersion. In addition, most of the
diffraction spots on the Laue photograph were sharp. However, some streaking
for a few spots was observed. The lines visible in Figure l(a) are associated
with growth ledges on the bottom of the crystal. The overall crystal thickness
was - 5 mam.

Preparatory to studying systematically the deformation properties of
Dr. Yee's crystal, considerable effort was devoted to its microstructural
characterization by surface reflection Berg-Barrett topography. This technique
(Figure 2(a)) involves recording the structure in an individual Laue
back-reflection spot under appropriate geometrical conditions on a fine-grained
nuclear emulsion plate or film.1  Local variations in diffracted intensity
(Figure 2(b)) can be associated directly with internal strains in the crystal
surface layer from which the X-ray beam is diffracted (i.e., the extinction
depth). 15 The use of Berg-Barrett topography for examining the microstructure
of crystalline materials has been discussed in detail.

14'1 ,17

Prior to obtaining the first topograph, two Knoop indentations (50 g load)

were placed (Figure 3(a)) in the top portion of the (710) growth surface to
serve as recognizable features that would offer some variation in contrast in
the topograph. The long axis of the indenter was aligned parallel to [OOT].
For one indentation, the (10) surface fully supported the indenter. For the
other indentation, the indenter was only partially supported by the (210)
surface, and a large crack resulted. No particular care was taken to insure
orthogonality between the applied force axis of the indenter and the (210)
surface. The strain fields of these two indentations are readily apparent in
the topograph for the (7211) reflection appearing in Figure 3(b). The enhanced

3
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FIGURE 1. LABORATORY-GROWN CRYSTAL
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diffracted intensity occurs because of the cumulative residual dislocation
strain fields that resulted from accommodating the indenter. Also visible in
this topograph is a large growth strain center associated with grown-in
dislocations emanating from the seed crystal to the (210) growth surface.

A topograph having significantly improved resolution appears in Figure 4(a)
for the (63) reflection. This improvement was primarily the result of being
able to reduce the film-to-specimen distance from 10 to 4 mm without overlapping
images becoming a problem. A stereographic description for the Berg-Barrett
X-ray topography alignment used in obtaining both a (72T) and a (632) reflection
image is given in Figure 5.

Extensive Knoop hardness testing (50 g load) was performed on the (210)
growth surface in regions not influenced by the large growth strain center to
assess systematically the degree1of plastic anisotropy. No effort had been made
in previous hardness experiments1 ,0 ' on RDX to select regions of the crystal
that were reasonably strain-free. Now, care was taken to maintain orthogonality
between the applied force axis of the indenter and the (2I0) growth surface by
leveling the crystal each time prior to indenting it. The hardness anisotropy
for this growth surface is shown in Figure 6, with maximum hardness near the
(124]. Significant cracking and corresponding lower hardness values occurred
when the indenter was aligned along the 1241]. This suggests that the amount of
plastic deformation under the indenter for this particular arrangement is
extremely limited. Consistent with hardness anisotropy measurements on NSWC
laboratory-grown crystals,'0 ,1  a considerble anisotropy in Knoop hardness
number was obtained for this more perfect laboratory-grown RDX crystal. This
anisotropy indicates that a limited number of slip systems are operative and
that cross slip (dislocation maneuverability) is very difficult. 18

The strain fields of the indentations are delineated in the (632)
reflection image in Figure 4(b). The absence of any diffracted intensity at the
actual indentation sites is the result of the severe strains there. Immediately
adjacent to these zero diffracted intensity zones are tiny black regions of
enhanced diffracted intensity. The observed highly localized strain fields
confirm a previous dislocation etch pit study1 0 on an indented NSWC crystal.
This result and the large degree of plastic anisotropy indicate that plastic
deformation is very inhomogeneous in RDX, even in reasonably perfect crystals.

Vickers hardness experiments (50 and 100 g load) were performed on the
(001) growth face of a number of Holsten production-grade Class D RDX crystals,
typically 1-2 mm in size (Figure 7(a)). Measurements at 100 g load allowed
better resolution of the crystallographically-determined crack traces
(Figure 7(b)) that emerged in the (001) surface. Vickers hardness numbers of 30
and 50 kgf/mm2 were obtained for two crystals at 100 g load with one pyramid
diagonal being roughly parallel (within 10-11l ) to 11101. Aligning the
pyramid diagonal considerably off f110] yielded badly distorted impressions that
were not suitable for hardness measurements. However, varying the indenter
diagonal alignment did not substantively alter the crystallographic alignment of
the cracking pattern.

7
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Microscopic examination of as-received/indented (Figure 7(a)) and tractured
(Figure 8) Holsten Class D crystals revealed the presence of numerous pores.
Porosity of this type would explain the large variation in Vickers hardness
numbers for these crystals. In addition to performing scanning electron
microscopy (SEM) on indentation-induced fracture surfaces of Class D crystals,
Dr. M. K. Norr (NSWC, Code R34) examined a number of indentations (e.g., Figure
9) in crystals for evidence of well-defined slip. No surface relief caused by
cumulative slip centered on the indentations was observed. However, there was
what appeared to be a thin sheared layer that was displaced into the large
oblong pore near where the Vickers indentation had been placed into the (001)
surface (Figure 8). Interestingly, this sheared layer is curved rather than
crystallographic in appearance, suggesting possibly that wavy slip 18 occurred.

FEASIBILITY OF MONITORING CHEMICAL DECOMPOSITION IN FRACTURED RDX CRYSTALS

A briet feasibility study was conducted by Dr. J. C. Hoffsommer (NSWC, Code
Rib) to assess using various instrumental methods to monitor chemical
decomposition in crystalline energetic materials that have been deformed and/or
fractured in a controlled manner. Assuming that the amount ot gas evolved
during the fracture of RDX is the same as that for k-lead azide, 19 it is
estimated that a 0.05 g crystal of RDX would experience a 0.000177% weight loss
corresponding to 0.0024 mole Z decomposition. Thin-layer chromatography, high
performance liquid chromatography, and gravimetric methods would all be too
insensitive to detect such a small amount of decomposition. However, gas
chromatographic analysis (electron capture detector) appears feasible to measure
chemical decomposition in fractured KDX crystals, provided an organic (e.g.,
nitroso) derivative is formed with a retention time sufficiently different from
RIX. In the event that RDX is completely degraded to gaseous products, a
specially adapted mass spectrometer, such as that described by Fox and
Sor i a-RI I z , would be needed.

In addition, arrangements were made with Prof. J. T. Dickinson, Washington
State University (WSU), to perform fracto-emission experiments at WSU on a
nuMber of Holsten production-grade Class D RDX crystals, on a few laboratory-
grown RDX crystals that are to be characterized at NSWC, and on various model
inert crystals.

EXPERIMENTAL INVESTIGATION OF HOT SPOT FORMATION DURING IMPACT

This work is in support of another effort investigating hot spot formation
in crystalline explosives, plastic bonded explosives, and propellants when
drop-wight im act loaded. An effort was made to verify theoretical
predictions ' that hot spot temperature is proportional to dislocation
velocity. Originally, it was planned to use an infrared technique to measure
heating as a function of loading rate in samples that were impact loaded.
Unfortunately, an equipment problem prevented this. Instead, the time of
ignition (based upon measurement of the sample's electrical resistance during
impact (with a 5 kg drop weight) was determined as a function of the applied
lad and the loading rate.

12
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A number of neat crystalline and plastic bonded explosives, including RDX,
HMX, and PETN (pentaerytliritetetranitrate), were studied; the crystalline
explosive samples were 30-35 mg pressed discs (5 nun diameter x 1 mm high). For
a given threshold loading rate, corresponding to the tirst observation of
ignition, it was noted that ignition occurred at or just after the maximum in
the applied force-time history, measured by a strain gage mounted on the anvil.
As the loading rate was increased, the force level at which ignition occurs was
found to decrease. Most of this decrease occurs just beyond threshold. For
PETN, which has been studied most extensively, doubling the loading rate reduces
the average force on the sample at ignition by about a factor of 5. Although
needing additional verification, this average force seems to be approaching a
limiting value for progressively higher loading rates. In a directly related
way, as the loading rate increases, ignition occurs with decreasing amounts of
sample deformation. Still needed are strain measurements that will allow stress
level comparisons.

DEFORMATION OF MODEL INERT MATERIALS

The nature of the plastic deformation resulting from performing hardness
experiments on selected model inert crystals was investigated at the University
of Maryland, College Park, using Berg-Barrett topography. Among the crystals
chosen for eventual study are LiF, NaCi, KC1, and MgO, all having the rock salt
structure. They span a significant range in deformation behavior for this
crystal structure, from being reasonably ductile, as is LiF, to being relatively
brittle, as is MgO. Further, these materials have dislocation structures
capable of being characterized by X-ray topography. 17 Previous results
obtained on LiF crystals have indicated that it should not be prone to hot spot
formation because of its ductility, preventing a discontinuous strain gage
response. Alternatively, specific dislocation interactions are known to
promote cracking in MgO. Thus, it is of interest to determine whether this
cracking behavior 22 is associated with a discontinuous stress-strain response,
and how this then relates to hot spot formation. Particular emphasis was given
to studying MgO during this reporting period. In addition to the wrk at the
University of Maryland, synchrotron X-ray topography was performed on an
indented NaCI crystal at the Cornell High Energy Synchrotron Source (CHESS);
this particular aspect of the work was done in collaboration with Mr. R. C.
Dobbyn and Dr. M. Kuriyama of the National Bureau of Standards.

Hardness experiments using a 1.59 n (0.0625 in) diameter spherical
indenter (U, 3.5, 15, and 100 kg load) were performed on the (001) cleavage
surface of a large (several cm) MgO crystal. A Vickers indenter (25 and 100 g
load) was then used to probe the strain field caused by the spherical indenter
(100 kg load) in an effort to assess strain hardening. The indentations placed
at 15 and 100 kg load are shown in Figure 10(a). A Berg-Barrett topograph (022)
reflection) of the same area appears in Figure 10(b). The absence of diffracted
intensity (white region) centered at either indentation is readily apparent.
Immediately surrounding the white region for the indentation placed at 15 kg
load is a region of dislocation enhanced diffracted intensity. By comparison,
only a minimal region of enhanced intensity exists for the 100 kg load
indentation, even though its size might be expected to scale. This surprising
lack of enhanced intensity is caused by an absence of residual dislocations that
were able to run out to the 11101 radial crack surfaces (Figure II).
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.15 kgf 100 kq

2mm", ,,

(a) REFLECTED LIGHT PHOTOGRAPH

io6

.

(t)) X RAY SURFACE REFLECTION TOPOGRAPH

CtI$K. RADlIATION AT 18 kV AN) 20 mA FOR
2 h) ON ILFORD L4 50,-.m NUCLEAR PLATE

FIGURE 10. HA/VDNESS INDENTATIONS (SPHERICAL INDENTER) IN THE (001)
CLEAVAGE SURFACE OF MqO
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2.5 min

FIGURE 11. ENLARGED VIEW (REFLECTED LIGHT) OF INDENTATION (SPHL.R'CAL
INDENTER AT 100 kg LOAD) IN (0011 CLEAVAGE SURFACE OF MgO
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Measurements were made (Figure 12) of indentation size and crack length
that resulted for the various loads on the ball and Vickers indenters.
Microindentatioi results obtained by Armstrong and Raghuram 9 and dynamic ball
measurements reported by Chaudhri, Wells, and Stephens 24 are included.
Results in Figure 12 show that a power law relationship exists between force and
diagonal crack length with the exponent equaling 3/2 in agreement with a
fracture mechanics analysis of Lawn and Fuller. 2 5

An effort was made to quantitatively assess the relationship between the
strain field surrounding the hardness impression and the cracking that occurred
at the indentation site as a function of indenter load. Measurements of the
diagonal fll0 crack length, dc, and the diagonal length for enhanced X-ray
diffraction (i.e., the extent of the strain field), dx, were made from
Berg-Barrett topographs. For the indentation made with the spherical indenter
at 100 kg load, dx = 3-4 mam, dc = 4.2 mm, and dx < dc. At 15 kg load,
dx = 1.8 nun, d. = 0.8 mm, and dx . 2.3 dc . For the Vickers impression
made at 0.1 kg load, dx = 0.18 mm, dc = 0.05 mm, and dx = 3.6 dc. Armstrong
and Raghuram 9 obtained for a Vickers impression made at 0.05 kg load (the
lowest load for which cracking occurred) dx = 0.2 mm, dc = 0.03 mm, and dx
= 6.7 d.. These results indicate that an inverse relationship exists between
the size of the strain field surrounding the hardness impression and the extent
of l110 cracking for MgO single crystals.

Hardness impressions were also placed into the (001) cleavage surface of a
large k2x2xl cm) NaCl (Ilarshaw) crystal using a 1.59 mm (0.0625 in) diameter
spherical indenter (3, 10, and 15 kg load). Synchrotron radiation topographs
were obtained 2 3 ,26 at the CHESS using the system depicted in Figure 13. A
topograph (04-4) reflection) of a region of the (001) surface containing three
ball indentations appears in Figure 14. The eight-lobed regions of zero
diffraction intensity are caused by slip-induced crystal lattice rotations under
the spherical indenter. A stereographic projection description of this appears
in Figure 15. Observation of the zero intensity regions centered on the
indentations is a function of the angular position of the sample with respect to
the incident X-ray beam (Figure 1b); this sequence of images was photographed
from a video screen (the zero diffraction region now appears black).

18
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FIGURE- 12 LOGARITHMIC VARIATION OF APPLIED FORCE ON THE INDENTER
VERSUS DIAGONAL INDENTATION AND CRACK LENGTHS FOR MqO
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FIGURE 13. SCHEMATIC OF SYNCHROTRON X-RAY TOPOGRAPHY SYSTEM

(AFTER REFERENCE 23)
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(Tool
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FOR 5 MIN ON ILFORD L4 50 um NUCLEAR PLATE

FIGURE 14. SYNCHROTRON X-RAY TOPOGRAPH ( (044) REFLECTION) OF INDENTATIONS
(SPHERICAL INDENTER) IN THE (001) CLEAVAGE SURFACE OF NaCI

(AFTER REFERENCES 23 AND 26)
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SURFACE OF NaCI AS A FUNCTION OF ANGULAR POSITION OF CRYSTAL

(AFTER REFERENCE 23)
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SUMMARY

Berg-Barrett X-ray topography has been used to characterize growth
perfection and the extent of deformational zones associated with induced
imperfections (i.e., hardness impressions) in a laboratory-grown RDX crystal
having reasonable microstructural perfection. Large, localized internal
stress concentrations are predicted to occur in RDX, helping to explain its
propensity for hot spot formation under drop-weight impact conditions. The
considerable variation in Vickers hardness observed for Holsten production-
grade Class D RIX crystals was attributed to porosity.

A companion study involving hardness experiments and Berg-Barrett
topography (to assess the strain fields surrounding the hardness impressions)
was performed on MgO. This material was selected as a model inert that should
exhibit a discontinuous stress-strain response. It was observed, for applied
loads increasing from I to 100 kgf, that the size of the strain fields centered
on the impressions was controlled by cracking. In particular, there was a
virtual absence of dislocations around the indentation placed at 100 kg load
because thy ran out 11101 radial crack surfaces; this was contirmed by the
inahility to measure any systematic strain hardening by probing the strain field
with a Vickers indenter at low loads.

24
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